Uplink Channel Estimation and Data Transmission in Millimeter-Wave CRAN with Lens Antenna Arrays

نویسندگان

  • Reuben George Stephen
  • Rui Zhang
چکیده

Millimeter-wave (mmWave) communication and network densification hold great promise for achieving highrate communication in next-generation wireless networks. Cloud radio access network (CRAN), in which low-complexity remote radio heads (RRHs) coordinated by a central unit (CU) are deployed to serve users in a distributed manner, is a costeffective solution to achieve network densification. However, when operating over a large bandwidth in the mmWave frequencies, the digital fronthaul links in a CRAN would be easily saturated by the large amount of sampled and quantized signals to be transferred between RRHs and the CU. To tackle this challenge, we propose in this paper a new architecture for mmWavebased CRAN with advanced lens antenna arrays at the RRHs. Due to the energy focusing property, lens antenna arrays are effective in exploiting the angular sparsity of mmWave channels, and thus help in substantially reducing the fronthaul rate and simplifying the signal processing at the multi-antenna RRHs and the CU, even when the channels are frequency-selective. We consider the uplink transmission in a mmWave CRAN with lens antenna arrays and propose a low-complexity quantization bit allocation scheme for multiple antennas at each RRH to meet the given fronthaul rate constraint. Further, we propose a channel estimation technique that exploits the energy focusing property of the lens array and can be implemented at the CU with low complexity. Finally, we compare the proposed mmWave CRAN using lens antenna arrays with a conventional CRAN using uniform planar arrays at the RRHs, and show that the proposed design achieves significant throughput gains, yet with much lower complexity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-User Millimeter Wave MIMO with Full-Dimensional Lens Antenna Array

Millimeter wave (mmWave) communication by utilizing lens antenna arrays is a promising technique for realizing cost-effective 5G wireless systems with large MIMO (multiple-input multiple-output) but only limited radio frequency (RF) chains. This paper studies an uplink multi-user mmWave single-sided lens MIMO system, where only the base station (BS) is equipped with a full-dimensional (FD) lens...

متن کامل

Superconducting Microstrip-Fed Antenna Coupled to a Microwave Kinetic Inductance Detector

A proper antenna to couple to a microstrip Microwave Kinetic Inductance Detector (MKID) is designed and simulated. A twin-slot microstrip-fed inline antenna is designed for frequency band of 600-720~GHz integrated with an elliptical lens and coupled to the MKID. A systematic design procedure for design of such antenna with microstrip inline feeding is presented. Whole structure of lens and twin...

متن کامل

Biologically Inspired Four Elements Compact Antenna Arrays With Enhanced Sensitivity for Direction of Arrival Estimation

A new four elements compact antenna array is presented and discussed to achieve enhanced phase resolution without sacrificing the array output power. This structure inspired by the Ormia Ochracea’s coupled ears. The analogy between this insect acute directional hearing capabilities and the electrically compact antenna array is used to enhance the array sensitivity to direction of arrival estima...

متن کامل

Beamforming Based Full-Duplex for Millimeter-Wave Communication

In this paper, we study beamforming based full-duplex (FD) systems in millimeter-wave (mmWave) communications. A joint transmission and reception (Tx/Rx) beamforming problem is formulated to maximize the achievable rate by mitigating self-interference (SI). Since the optimal solution is difficult to find due to the non-convexity of the objective function, suboptimal schemes are proposed in this...

متن کامل

DWDM millimeter-wave radio-on-fiber systems

We describe some of our recent results on DWDM mm-wave radio-on-fiber (RoF) technology for future broadband wireless systems. A supercontinuum (SC) light source is a promising multiwavelength light source for the system with photonic up-conversion. Multiplexing and demultiplexing schemes for optical frequency interleaving in order to extend the number of antenna base stations can be constructed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1802.02076  شماره 

صفحات  -

تاریخ انتشار 2018